
PROGRAMMING SUPPORT EN..(U) VIRGINIA POLYTECHNIC INST
AND STATE UNIV BLACKSBURG DEPT OF C..

UNC ASSIFIED T E LINDQU ST ET AL. APR 84 C584004-R F/G 9/2 NL

E EEAI488EII I I I
EIIIIIIIEEEII*IIIIIIIIIII

I.
9- aIM2

M-IP HLUTIN TEST CHART

A SPECIFICATION TECHNIQUE FOR THE
COMMON APSE INTERFACE SET*

00
00

by

ITimothy E. Lindquist

Jeffrey L. Facemire
Dennis G. Kafura

Computer Science Department

TT

Virginia Polytechnic in.stilutc

and 11Slat c nircils!

Blacksbur, . \ifi,,i 24061

This document has been approved
for public olease and sale; its

distbuiX is unlimitedL 5 0 8

A SPECIFICATION TECHNIQUE FOR THE
COMMON APSE INTERFACE SET*

by

Timothy E. Lindquist
Jeffrey L. Facemire
Dennis G. Kafura

Department of Computer Science
Virginia Tech

Blacksburg, VA 24061

March 20, 1984

DTICVC:f

* This research was supported by the Ada Joint Program Office A
through the Office of Naval Research Information Sciences
Division under ONR contract number N00014-83-K-0643. The
effort was under the technical direction of Virginia L. Castor
Wright-Patterson AFB, Ohio. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
The views expressed herein are solely those of the authors.

This-do-cuament has ben approved
f ror public releas amd sale; ils
diitributio ii unjijnit%&

SECURITY CLASSIFICATION OF THIS PAGE ("ni Dote Enf.1'40

REPORT DOCUMENTATION PAGE RED CSTRUCINOS
I REPORT NUMBER S. GOVT ACCESSION NO: I. RECIPIENT'S CATALOG NUMBER

84004-R a f
4. TITLE (and Subtitle) A. TYPE OF REPORT & PERIOD COVERED

Technical

A Specification Technique for the

Common APSE Interface Set PERFORNG OG. REPORT NUMBER

7. AUTNORtg) S. CONTRACT OR GRANT NUMUER(s)

Timothy E. Lindquist N00014-83-K-0643
Jeffrey L. Facemire
nlpnnipG_ Kafura

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Computer Science Department
VPI & SU
R]leghi~rl A:4~ ,

11. CONTROLLING OFFICE NAME AND ADDRESS I1. REPORT DATE

Office of Naval Research, Code 442 April, 1984
800 North Quincy St. ,s. NUMBER OF PAGES
Arlington, VA 22217

14 MONITORING AGENCY NAME A AOORESS(II diffetnt from Controllng Office) IS. SECURITY CLASS. (of this report)

AFWAL/AAAF unclassified
Wright-Patterson AFB, Ohio 45433

1. Old.. ASSI FIC ATION/DOWNGRADING
SCHEDULE

IS OISTRIOUTION STATEMENT (olt ilefi porl)

Approval for public release, distribution unlimited

17. OISTRIBUTION STATEMENT (of the abslract enered In Stock 20. it di.fferent Drem Report)

IS. SUPPLEM4ENTARY NOTES

1. KEY WORDS (Contlinue o Ieee add*Inlao7 nd idtify by blD aM ')

Ada, Programing Environments, APSE, CAIS, Specification, Abstract Machines,
Validation

20. AESTRACT (Cf,;m - ,ever se, i....7 m'.E.. adu r S ek M iAn)

This report demonstrates an approach to specifying kernel Ada support
environment interface components. The objectives are to provide a mechanism
which allows building a complete enough specification for validation, an
understandable specification, and one that is relatively easy to construct.
In meeting these objectives, an Abstract Machine approach has been modified
and applied to functional description of kernal operations. After motivating
and explaining the approach, the paper exemplifies its utility. (over)

00 , 1473 EDITION OP I No Of Is oSoLETE
S/N 0102- L. 014- 6601 SECUItY CLAWFlICATIGS*P lO OPAGE ('l i e DWO 5.w*

IP.

SKCUInTV CLASSIFICATION OF THIS PAGIL (3We* Dale &nm.

Interactions among kernal operations and pragmatic implementation limits,
which are other needed parts of a specification, are also discussed.

C3

S/N 102- LP 014-.66@1

$gCUMITY CLASSFICATION OF THIS PASE(M.S DS

ABSTRACT

\/This report demonstrates an approach to specifying kernel
Ada support environment interface components. The objectives
are to provide a mechanism which allows building a complete
enough specification for validation, an understandable
specification, and one that is relatively easy to construct.
In meeting these objectives, an Abstract Machine approach has
been modified and applied to functional description of kernel
operations. After motivating and explaining the approach, the
paper exemplifies its utility. Interactions among kernel
operations and pragmatic implementation limits, which are other
needed parts of a specification, are also discussed.

CONTENTS

ABSTRACT...........................2

I. PROBLEM STATEMENT................................

II. SPECIFYING FUNCTIONALITY.....................6

A. ABSTRACT MACHINES..........................10

B. THE ABSTRACT PROGRAM FOR SPAWNPROCESS.........13

III. SPECIFYING PROTOCOLS AND HIDDEN INTERFACES.......19

A. HIDDEN INTERFACES..........................19

B. PROTOCOLS..................................23

IV. SPECIFYING PRAGMATIC LIMITS.................25

V. SUMMARY..........................28

VI. REFERENCES..................................30

Page 1

I. PROBLEM STATEMENT

A fundamental goal of the Ada* program is to increase

portability between different Ada Programming Support

Environments (APSEs). Recognizing that transportability

extends beyond language issues, the Ada Joint Program Office

has formed the Kernel APSE Interface Team and Kernel APSE

Interface Team for Industry and Academia (KIT and KITIA) (81.

These teams are formulating the requirements for, and

preliminary form of, a set of kernel interfaces for tools that

are needed to support an APSE. The thesis driving this

development is: if programs that comprise an APSE use the same

interface to the underlying kernel then tools and data will be

transportable among APSEs. The KIT and KITIA have designed a

preliminary version of the interfaces necessary for supporting

program development tools. The interfaces [21, called the

Common APSE Interface Set (CAIS--pronounced as case), extends

the functionality of Ada as needed for implementing APSE tools.

As the name implies, CAIS is to be adopted on all Ada

development environments as the interface between tools and

their underlying kernel facilities.

Tool transportability can be viewed as having three

necessary conditions. The language processor must be identical

*Ada is a registered trademark of the United States Department
of Defense Ada Joint Program Office.

Page 2

across APSEs, tool-to-tool protocols must be identical, and the

tool-to-kernel interface must be identical. Figure 1 shows the

three types of interactions that correspond to these

conditions. Tool-to-tool protocols are represented with a

dashed edge indicating an indirect interaction. Any

communication one tool has wit'- another is actually realized

through either the language ot ternel interface. Another

example of an indirect interaction, although not involved in

transportability, is the human-to-tool interface. User

interactions with a tool are also realized indirectly through

underlying services. The Ada Compiler Validation Center (ACVC)

addresses the first transportability condition by supporting

and administrating a Compiler Validation Suite 19). The second

condition requiring the use of common tool-to-tool protocols

refers to interactions among tools. Tool-to-tool protocols may

take the form of intermediate files, message streams, inter-

tool timing and synchronization, or resource contention. When

transporting an isolated tool, independent of others with which

it communicates, these protocols must be addressed. For

instance, if a debugger were to be transported from one APSE to

another, the compiler-to-debugger protocols, such as those

manifest through the symbol table and intermediate code, must

be identical on the original and target APSEs.

The interface to kernel operations, which support files,

devices, and processes, must also be identical to transport a

tool. KIT and KITIA have designed the CAIS to address this

aspect of transportability. One of the objectives of the APSE

. .. III II.. .lr. . .-1 .. - - " " ' "' " " - 1 ; ,T.L _:. , :.. . . 1

Page 3

TOOL-TO-TOOL

PROTOCOLS

TOOL OTHER
TOOLS

KERNEL LANGUAGE

INTERFACE INTERFACE

CAIS Ada

IMPLEMENTATION 3UPPORT

Figure 1. APSE Tool Transportability Interfaces.

Evaluation and Validation Team (E&V) is to initiate the

development of a CAIS Validation Suite I]. The suite will be

administered to assess compliance to the CAIS specification in

much the same way as the Compiler Validation Suite is used. If

a tool uses only CAIS facilities and uses them in a manner

consistent with the CAIS specification then this

transportability requirement is satisfied. While functional

compatibility of CAIS implementations will be assured through

validation, a tool will not transport unless it uses CAIS

Page 4

according to specifications. For example, a tool may be

written to depend upon functionality that extends the CAIS in a

way that is not detectable by the validation suite.

A prerequisite to developing the CAIS Validation Suite is

a clear specification. Since the purpose of validation is to

assess the degree to which an implementation adheres to the

specification, a concise, complete, and consistent

specification is needed. Aside from its utility to users and

implementors, the specification is the primary input to

constructing a validation suite.

An example from CAIS further motivates this need and

demonstrates how difficult complete natural language

specifications are to write. CAIS section 6.2.2 describes

synchronous and asynchronous operations that allow one process

to call another. In describing the parameter RELATIONSHIPKEY

to the asynchronous call, CAIS states:

"The calling task can either supply the KEY
or the CAIS implementation will assign a
key via UNIQUECHILDKEY."

Although the statement itself is clear, when taken in the

context of other CAIS operations it is either incomplete or

inconsistent. According to the statement, the user-defined key

could be a duplicate (the same key as another child's of the

same primary relation). If this is indeed allowed, it is

inconsistent with other CAIS operations that don't specify the

meaning of accessing a duplicate key. More likely, the

Page 5

statement is incomplete, and the intended meaning is:

If the calling task supplies a key that is
unique to all siblings of the same relation
then that key is used. Otherwise, the
implementation will assign a key that is
unique across the relation.

An incomplete or inconsistent specification leaves the

validator with the choice of either ignoring a potentially

distinguishing semantic characteristic or interpreting the

intentions of the designer. As applied to the child key

example, the validator could either not test a duplicate key or

assume the designers intent to force no duplicates.

The report of a preliminary study of validation in an APSE

[71, indicates that specifying an interface set, such as CAIS,

requires more than a description of the syntax and

functionality. Additionally, interactions that exist at the

interface must be specified. Hidden within the implementation,

operations are related to each other in the same way as tools

are related. Several CAIS operations may use a common data

structure or may be synchronized. Further, any pragmatic

limits which apply to implementations must also be specified.

These might include the length of identifier strings, field

sizes, maximum number of processes, or maximum number of times

a facility can be called.

The question addressed in this report is: How can the

meaning of CAIS be specified in a manner that is readable,

lends itself to the complete capture of semantics, and aids in

I

Page 6

constructing a validation suite? Th' remainder of the report

discusses a CAIS specification technique that incorporates

separate parts for functionality, interactions, and pragmatic

limits. The syntax of CAIS operations is also a necessary part

of the specification, but it is assumed that the visible part

of Ada package specifications are a good vehicle for this

description.

II. SPECIFYING FUNCTIONALITY

CAIS consists of several package specifications, some

defining types and others defining interface operations.

Package specifications, however, only provide syntactic

structure. This structure distinguishes between procedures and

functions, the names and types of parameters, and return types.

Currently, the functionality of operations is specified through

commentary descriptions. For the purposes of this paper,

functionality means the manipulations and checks made on input

arguments, any conditions causing errors/exceptions, specific

return status, and the outputs (effects) generated by an

operation.

The validation report [7] discusses four alternative

..............................

Page 7

methods for describing interface functionality including

English commentary, examples, formal descriptions, and Abstract

Machines.

Commentary, or a natural language description, is

currently being used in the CAIS specification since it is easy

to construct and comprehensible, but it is easy to overlook key

semantic issues, which often result in incompleteness or

ambiguity. When presented with commentary descriptions, the

validator is often left with the task of resolving ambiguity

and making arbitrary semantic decisions as indicated in the

example of a child key already cited. While it is true that

incomplete specifications can be generated using any technique,

the more rigorous structure of formal and Abstract Machine

descriptions make incompleteness less of a problem than with

commentary. Natural language descriptions of functionality are

valuable during the design phase, but must be replaced by

increasingly more complete techniques as the design solidifies.

One method of specifying the entire CAIS semantics, which

has been explored by Freedman [31, uses a formal technique

based on Denotational Semantics (101. Formal specifications

could use either a Denotational or Axiomatic [6] approach,

which provide the mathematical meaning of each of the

operations being specified. If an axiomatic approach were

adopted, a mathematical theory of CAIS would be developed.

Axioms (or assumed truths) would be designed, in the form of

logical statements. Each axiom would describe the

Page 8

functionality of an operation such as INVOKEPROCESS. For

example an axiom for OPEN might take the form:

PRE {OPEN(path,handle)l POST

Where PRE and POST are logical propositions. The

interpretation of the axiom states that if PRE is satisfied

before invoking OPEN then POST is satisfied when (if) it

completes. PRE and POST, describe in terms of path and handle,

the functionality of OPEN. Rules would also be constructed

showing how axioms could be combined to describe the meaning of

invoking various combinations of operations. Theorems of the

theory could then be proven indicating the meaning of various

CAIS operations as they might be used by a tool.

Functionality can also be described operationally in the

form of Abstract Machines. To apply this approach, programs

are written to describe what CAIS operations do. If there

existed an executor for the programs (the Abstract Machine)

then an operational definition of CAIS functionality would

exist. Freedman indicates that an operational description of

programming languages (usually a prototype compiler) has

traditionally existed prior to a formal description. In a

later point paper [41, he suggests that such a description of

CAIS be developed. Abstract Machines can provide an adequate

link between the operational and formal definitions providing

that the two primary drawbacks discussed by Freedman [31 are

resolved.

One drawback is that the Abstract Machine approach is

Page 9

bottom-up. Before descriptions of operations can be detailed

(or understood), the instructions and data recognizable by the

machine must be designed. It is true that any semantic

description technique must define the meta-language in which

the description is formulated. For the CAIS (its users and

implementors), the best solution to this problem is to describe

functionality in an Ada-like language, which is done in the

Abstract Machines presented in this paper.

The second drawback to Abstract Machines is that they may

bind the implementor to a specific implementation technique.

While an Abstract Machine description of a CAIS operation can

indicate a specific implementation, the technique used to

construct Abstract Programs can minimize implementation

dependence. For example, one abstract description of CAIS Node

Handles might completely specify their type. Implementation

independence can be retained by incompletely specifying the

handle and only indicating the primitive operations that the

Abstract Program needs to perform on a handle. Beyond properly

constructing abstract programs, it must be emphasized that the

descriptions generated as Abstract Programs define

functionality only through the effects that their conceived

execution would have. Although Abstract Machine descriptions

may implicate a single implementation, any implementation

generating the same externally observable effect is suitable.

1j

Page 10

A. ABSTRACT MACHINES

This section characterizes the Abstract Machine approach,

and presents an example Abstract Program for a part of CAIS

Process Control. Writing programs for an Abstract Machine,

which describe CAIS operations, is the basis for this approach.

The utility of such a description is independent of an actual

executor for the machine. The value of the technique depends

greatly on whether the intended audience can understand the

meanings of Abstract Programs. For CAIS, an Abstract Program

describing INVOKE-PROCESS is only useful if CAIS users,

designers, and implementors can understand the operation

independent of an executor. Since the Abstract Machine may

never be built, it must be well-defined and human

understandable.

The Abstract Machine, for which programs are presented in

this paper, consists of three components:

1. A Processor
2. A Storage Facility
3. An Instruction Set

The processor is able to recognize and execute instructions

from a predefined set. Each instruction has an action that the

processor carries out in some data context. One component of

the processor, called the environment pointer, indicates the

data context in which an instruction is to be executed.

I r

Page 11

Another component, the instruction pointer, allows the

processor to sequence through the instructions of the program

executing them as appropriate.

The storage of the processor is a memory for both data and

programs. Data values, as named through program identifiers,

may be stored for reference throughout the execution of a

program. The last component of the Abstract Machine, the

instruction set defines actions that may be performed in a

program. The foundation of the instruction set used in this

report is Ada.

The functionality of a CAIS operation is given by detailing

an Ada-like package body. Package bodies are described through

a set of procedural instructions, which if executed would

perform the intended function. In constructing an Abstract

Program, operations are needed that are not part of the Ada

language. These operations and primitive objects, which are

also needed to augment Ada, are treated as axioms of the

machine. The meanings of primitive objects and operations are

left to commented package specifications. These additional

packages, whose bodies are not detailed, can be viewed as

extending the instruction set of the Abstract Machine to

include operations, objects, and types beyond the scope of Ada.

Figure 2 illustrates the Abstract Machine for CAIS. The

processor and storage have components for the Ada language as

well as additional aspects indicating the ability to extend

Ada. Abstract Programs are indicated to exist for each CAIS

Page 12

ABSTRACT CAISNODE CAISTERMINAL CAISLIST

PROGRAMS MANAGEMENT SUPPORT UTILS

PROCESSOR TSTORAGE

Ada PRIMITIVE Ada PRIMITIVE

STATEMENTS OPERATIONS OBJECTS OBJECTS

Figure 2. Abstract Machine for CAIS Functionality

package defined.

Several reasons make Ada a desirable vehicle for the

definition. One reason is the richness of Ada control

constructs and type facilities, which are enhanced by packages,

exceptions, and tasking. These make it particularly suitable

for semantic description. Further support for using Ada lies

in the observation that any language used as a semantic

description tool must have well-defined semantics of its own.

Although Ada has not been specified formally, the language's

controlled definition does provide an adequate semantic base

for the Abstract Machine. Another reason for using Ada is that

the descriptions can be compiled, but the most compelling

reason is that it is compatible with the problem and user

Page 13

environment. CAIS implementors and users will be familiar with

Ada making the Abstract Programs much more comprehensible.

B. THE ABSTRACT PROGRAM FOR SPAWN PROCESS

The CAIS specification currently consists of a group of

related Ada package specifications together with associated

commentary. The package specifications demonstrate the syntax

of operations, and English commentary is used to describe both

the semantics and rationale for components. The Process

Control package of CAIS provides for invocation, state query,

temporary suspension, and termination of programs. Using a

process for each Ada program, a tree structure of process nodes

exists for each job. The root of the tree is called

CURRENTJOB. Each time a process invokes another, the new

process becomes a child of the caller. All processes in the

tree are uniquely identified by a pathname that consists of a

sequence of delimited pairs of relation names and relationship

keys. Each pair in the pathname corresponds to a single level

of the tree. A child is uniquely selected by the pair, where

the relation name (DOT--abbreviated as '.') identifies among

possibly many relations emanating from a node, and the key

identifies one of possibly many siblings of the relation.

4m

Page 14

Mechanisms provided for invoking a program include

synchronous and asynchronous calls. The synchronous facility

is the logical equivalent of procedure call. The caller

transfers control to the called program and awaits its

completion, at which time the caller continues execution. The

procedure INVOKEPROCESS implements synchronous calls and

includes parameters that return the results and completion

status of the called program. Asynchronous call

(SPAWN PROCESS) initiates a program as requested, but provides

no further communication or synchronization. Once the new

program has been initiated, the caller continues independent of

the called program. No feedback to the caller is automatically

provided, but the operation AWAITPROCESS can be called to

synchronize with completion and obtain results. Communication

among asynchronously executing programs can be accomplished

through the message operations provided by the package

CAISPROCESSCOMMUNICATION.

Figure 3 contains an Abstract Program for the asynchronous

calling mechanism SPAWNPROCESS, which is contained in the

Abstract Program for CAIS PROCESS CONTROL. Although the

remainder of the body is not shown, it defines the context for

SPAWNPROCESS to include the necessary node and process

definitions. The Abstract Program for SPAWNPROCESS causes a

process node to be created for the program and causes the

process to begin execution. The indicated program is first

found and verified to be in executable form. By opening the

associated file node, the pathname is traversed obtaining a

Page 15

procedure SPAWN_ PROCESS (PROGRAM: in PROGRAM STRING;
PARAMS: in PARAMSSTRING; NODE: in out NODETYPE;
KEY: in out RELATIONSHIP KEY:=UNIQUE CHILD KEY;
STDIN: in FILE TYPE:=CAIS TEXTIO.CURRENTINPUT;
STD OUT: in FILE TYPE:=CAIS TEXT IO.CURRENTOUTPUT;
STD ERROR: in FILE TYPE:=CAIS TEXT IO.CURRENT_ERROR;
CURRNODE: in NAME STRING:="'CURRENTNODE");

ISUNIQUE : BOOLEAN:=TRUE;
NODE,NEXT NODE : NODE_TYPE;
FILE TYPE : CAIS LIST UTIL.LIST
ITERATOR : NODEITERATOR;

begin

OPEN(NODE,PROGRAM);
if KIND(NODE) /= FILE

then CLOSE(NODE);
raise NAME-ERROR;

end if;
GETNODEATTRIBUTE(NODE,"filetype",FILE TYPE)
if CAIS LIST UTIL.IDENTIFIER(FILETYPE)/'executable image';

then CLOSE(NODE);
:-aise NAMEERROR;

end ff;
CLOSE(NODE);

--Assume CURRENT PROCESS is a handle on myself.
--Determine whether the user specified key is unique.

ITERATE(ITERATOR,CURRENT PROCESS,KIND=>PROCESS);
while (IS UNIQUE and MORE(ITERATOR)) loop

GET NEXT(ITERATOR,NEXT NODE);
if PRIMARY KEY(NEXT NODE) = KEY

then KEY := UNIQUEKEY(CURRENTPROCESS,'.',KEY);
ISUNIQUE:=FALSE;

end if;
end loop;
CREATE PROCESS_NODE(CURRENT_PROCESS,KEY,PROGRAM,PARAMS,

'ready',STD IN,STD OUT,STD ERR);
CONCURRENTRUN(CURRENTPROCESS,' .TKEY);

end SPAWN PROCESS;

Figure 3. Abstract Program for SPAWNPROCESS

handle to the program. A check is then made to assure that the

file node contains an executable program. The argument list to

SPAWNPROCESS includes a relationship key to be used in naming

the newly created process node. SPAWN PROCESS checks to see

whether the key is unique among other processes already

Page 16

initiated. The final actions taken by SPAWNPROCESS are to

create the process node as a direct descendant of the caller

and to request execution of the new process.

In current form, CAIS does not adequately address valid

inputs or error/exceptional conditions. As an example, the

first parameter to both forms of program invocation is the name

of the program being invoked. Although it is intuitively clear

what a program name is, this parameter must be further defined.

Syntactically, aside from the fact that the program name is a

string, what is the proper form for a program name? Are there

special characters that may or may not be allowed in a program

name? In this case, the intention is that the name must be a

valid file system name. Are there any additional constraints

on the name as is often the case in interactive systems (eg,

.EXE suffix)? What happens when the name is not syntactically

correct? A further line of questioning revolves around the

existence of the program, privileges to access it, and request

its execution. The answers to many of these questions can be

provided by reference to other CAIS components. For example,

the syntactic form of a pathname is detailed in CAIS Section

3.1.3. Figure 3 references OPEN from CAISNODEMANAGEMENT to

provide name validation. Such references allow duplication of

semantic description to be avoided.

The way that CAIS operations handle errors and the

conditions causing errors can be made clear through Abstract

Page 17

Programs. CAIS provides exceptions to indicate to the caller

such occurrences as NAMEERROR, USEERROR, and CAPACITYERROR.

Abstract Programs for operations that raise exceptions can

indicate under what conditions the exception is raised and

whether any other CAIS components handle the exception

(supposing an exception is raised in a CAIS procedure called by

a CAIS procedure).

The statements:

if CAIS LIST UTIL.IDENTIFIER(FILETYPE)/='executable image'
then- CLOSE(NODE);

raise (NAMEERROR);
end if;

make it clear that the condition causing the NAMEERROR

exception is that the PROGRAM argument does not name an

executable node. The absence of a handler, indicates that the

caller of the facility is responsible for deciding on an

appropriate action.

SPAWNPROCESS requires a unique key as an argument that

identifies the process being created. If the user wishes to

spawn a program as the child of the current process, but does

not know a unique key for the new process, then the CAIS

facility will generate one. While it is indeed important that

all keys for the descendants of a process node be unique, it

would be desirable to have the CAIS force that uniqueness by

changing the argument KEY provided by the user. In Figure 3,

the KEY parameter has been changed to IN OUT, and SPAWN PROCESS

checks for the uniqueness of the KEY. If it is not unique then

Page 18

a unique one is obtained as the new value of KEY. This is an

example in which there are two distinct successful completion

states for a CAIS facility. Using an additional parameter to

return status information pertaining to the execution of the

facility is much easier in this instance than using exceptions.

In the Abstract Program for SPAWN PROCESS, interactions

with (uses of) other CAIS operations are made explicit by

inclusion of the calls to those facilities. Examples of this

are the uses of OPEN, CLOSE, KIND, GETNODEATTRIBUTE, ITERATE,

and MORE which are Node Model routines; and IDENTIFIER which is

from CAIS List Utilities. Two operations are called, however,

which are not defined elsewhere in CAIS. CREATE PROCESSNODE

is used to build and initialize storage for a process.

CONCURRENT-RUN is used to indicate that once a process node has

been created and properly initialized, that something is done

to allow execution. No specific details, aside from a package

specification including them, are given for these operations.

They are assumed to be operations executable by the Abstract

Machine. Commentary in the specification of CONCURRENT RUN

might describe its functionality as:

The newly created process will begin execution
concurrently with the current process. Whatever
action that causes the process to complete will be
reflected in the STATE and COMPLETIONSTATUS
attributes of this process node.

Page 19

III. SPECIFYING PROTOCOLS AND HIDDEN INTERFACES

CAIS defines an interface providing kernel services to

program development tools. Operations alone characterize this

interface as it appears to the tool writer, but in an

implementation of CAIS, interactions take place among

operations and with the environment encompassing CAIS.

Specifying the functionality of operations only partially

exhibits these interactions, which are termed Protocols and

Hidden Interfaces. In this section we categorize these

interactions, indicate why they are important to validation,

and indicate how they can be specified.

A. HIDDEN INTERFACES

The distinction between Protocols and Interfaces is based

on the application of the Open Systems Interconnection (OSI)

Model to an APSE as detailed in [71 and later expanded and

refined by Goodwin [51. In one form of this model, the APSE

consists of layers of logical levels as shown in Figure 4. One

level is made up of development tools, another below it is the

CAIS, and below CAIS is all that is needed to support CAIS.

Page 20

Peer-to-Peer Protocols
+-------------------+------------+

Application--> I I< ------ >1 <--APSE
--------- +------------------------

Presentation-->I < ------- >1 <--Transfer
-------- +------------------------+4

Session-->I I< ----- > <--CAIS
--------- +------------------------

Transport--> < ------- >

Network--> < ------- >
<--0.S./

Data Link--> < ------ > hardware

Physical--> < ------- >
------- +------------+------------------------------------

I Physical Media I

Figure 4. APSE Reference Model

Using this model, Hidden Interfaces are the interactions that

provide for communication between objects at different levels.

An implementation of the CAIS has two interfaces, one with the

tools that use CAIS operations, and the other with the

underlying operating system or runtime system. The word

Interface in "Common APSE Interface Set" refers to the tool

interface.

Upward Hidden Interfaces, those with tools, are the rules

that detail how CAJS operations may be used. These rules

further the interface specification by crystalizing the

functional interdependencies among CAIS operations. In almost

every instance, the result of one CAIS operation can only be

viewed through another. For example, if one process uses the

SEND operation to communicate with another, a corresponding

Page 21

RECEIVE must be invoked to obtain the information. As another

example, before any operations may be performed on a node, OPEN

must be invoked to obtain a valid handle. Upon completing

operations on a node, the handle must be nullified using CLOSE

(or UNLOCK). In general terms, Abstract Programs detail what

CAIS operations do, and Hidden Interfaces augment this

information with the rules governing how CAIS operations

interact when called by tools.

The interactions are important to the tool writer, but are

also needed to construct a validation mechanism. Since the

implementation details of a particular CAIS will be hidden from

the validation tool, it must determine proper functionality of

an operation by observing through another operation. For

example, OPEN can only be validated by using the generated

handle in other CAIS operations, and by observing response to

erroneous input. One form of OPEN demonstrates this in more

detail.

OPEN(NODE: in out NODETYPE, NAME: in NAMESTRING)

When calling OPEN an output is generated in the parameter NODE

that is a handle to the object specified by the pathname NAME.

A validation suite is unable to examine the details of NODE to

determine whether OPEN works correctly. Instead the suite must

use OPEN to generate a handle and then exercise the correctness

of the handle through other CAIS operations.

Another example of an Upward Hidden Interface is the

attribute attached to file nodes indicating whether the file

Page 22

contains an executable program. This specific interface exists

between SPAWN PROCESS and the APSE tool that creates the file

node (Linker). While it is not important that all

implementations of SPAWNPROCESS use the same IDENTIFIER list

shown in Figure 3, it is important that a file node contain an

indication of its contents that can be examined by

SPAWNPROCESS. The validation suite must exercise this

protocol.

Downward Hidden Interfaces are the rules and conventions

governing interactions between a CAIS implementation and the

underlying operating system. One such interaction exists

between CAIS and the runtime support for Ada. If CAIS

operations are to raise, propagate, and possibly handle

exceptions then implementations must follow the same

conventions as the Ada runtime system. CAIS operations, which

may or may not be implemented in Ada, must be able to raise

exceptions and cause them to be propagated to the calling tool.

Any operation that uses another CAIS operation must be able to

either handle or propagate exceptions generated by the called

routine. A CAIS implementation may either use existing

services for treating exceptions or may follow specified

conventions that implement exception semantics. In either

situation, the validation of a CAIS implementation needs to

fully exercise the interface to tools where exceptions are

concerned.

In general, Downward Hidden Interfaces exist when the CAIS

Page 23

implementation uses an underlying object that is also used by

tools. In the example cited above, the details of exception

implementation need to be common to both CAIS and APSE tools.

This form of interaction has, in part, motivated a position by

Gargaro* emphasizing that runtime support needs to be addressed

as part of the CAIS (Common APSE Interface Set). Independent

of the common runtime support issue, downward Hidden Interfaces

need to be specified because of their impact on implementation

and validation. For the implementor, the specification must

detail what existing services must be used, or must detail what

conventions must be adhered to. For the validator, the

specification guides forming tests exercising either proper use

of existing services or adherence to conventions.

B. PROTOCOLS

Protocols refer to communication that takes place between

other objects at the same level. Protocols govern interactions

among CAIS operations, and are specified through the Abstract

CAIS Programs. As was pointed out in a previous section, a

*Anthony Gargaro KIT/KITIA Position developed based on the
paper, Program Invocation and Control in KAPSE Interface Team
Public Report Volume II, NOSC TD522, NOSC, San Diego CA,
pp.3LI-3L7, October 1982.

Page 24

functional description of one operation may include calls to

other CAIS operations. This type of interaction, called Uses-

Protocol, shows a functional hierarchy within CAIS. As an

example, SPAWNPROCESS (Figure 3) uses Node Management OPEN to

obtain a handle to the file node containing the program to be

executed.

A previous section has stated that the instructions within

an Abstract Program do not limit implementations. The

functionality of an operation is not defined by the

instructions of the program, but is defined by the effect of

executing the program on the Abstract Machine. The question

arises, however, whether implementations of SPAWNPROCESS

should use OPEN in the same manner as shown in the Abstract

program? The advantage of requiring the use of OPEN is that

the number of test cases needed to validate SPAWNPROCESS would

be greatly reduced. For example, several different input

conditions for OPEN may result in raising the EXCEPTION

NAMEERROR. If the validation suite for OPEN tests each of

these input conditions then only two separate corresponding

cases are needed for SPAWN PROCESS. Relying on the fact that

OPEN is called and has already been validated, SPAWNPROCESS

need only be tested to assure that it acts appropriately for

both exceptional and normal returns from OPEN. If, however,

SPAWNPROCESS is not required to use OPEN, then a test case

must be generated for each possible syntactic error and

nonexistent node error that may cause SPAWNPROCESS to

propagate a NAMEERROR. While requiring CAIS operations to use

Page 25

others has clear advantages and disadvantages, including Use

Protocols in Abstract Programs displays a needed functional

hierarchy of CAIS.

IV. SPECIFYING PRAGMATIC LIMITS

The final part of a CAIS specification provides details of

any limits which are applicable to the operations being

specified. One type of limit provides a bound on the use of an

operation or object. Another provides a limit on the size of a

CAIS object, such as identifier strings, number of entries, and

length of message strings. Use Limits specify constraints on

the control structure of tools. For example, the number of

processes that may be spawned by another or the number of

message channels that a process uses are determined by the

sequence in which instructions in the tool are executed. Value

limits on the size of CAIS objects, however, affect arguments

used in calls to CAIS operations. Both types of limits need to

be specified.

While the distinction between Use limits and Value Limits

is not important for the CAIS user or implementor, each present

different problems to transporting tools. For example,

Page 26

consider the limits on channels from Section 6.6 of CAIS [2].

A conforming implementation must support channel
names of up to 20 characters. A conforming
implementation must support up to 20 simultaneous
accepting channels from the same process.

Channels, which are used to communicate messages between

processes, are limited in both the size of their names and in

the number a process may use at a given time. Limiting the

number of characters in a channel name is an instance of a

Value Limit, while limiting the number of simultaneous channels

is a Use Limit. The task of validating that a CAIS

implementation conforms to the limits can be done in a

straightforward manner. A validation tool can exercise CAIS

operations both within and outside the limits specified. The

question of whether a tool adheres to the CAIS, however, is not

as easily determined. Through static analysis of the tool,

adherence to Value Limits can be determined since parameter

typing information is all that is necessary. In reference to

the limit above, a tool that uses channels to communicate can

be examined statically to determine that channel names have 20

or fewer characters. Determining whether the same tool adheres

to the limit placed on simultaneous channels, however, is not

as easy. Since adherence to Use Limits depends on the control

structure of the tool, dynamic instrumentation is often

necessary. Input from external sources, such as user input or

information from other processes, often determines the

execution path through a tool such as an editor or command

language interpreter. In these cases, static analysis can only

Page 27

indicate which inputs determine control flow.

The form in which limits are specified can have

consequences on CAIS validation and tool transportability. The

use of defined constants and type attributes in the definition

of Ada has eased language validation and increased program

transportability. By using much the same specification

technique for CAIS limits, CAIS validation can be simplified

and tool transportability can be increased. To exemplify how

the attribute TYPE'LAST and CAIS implementation defined

constants can be used, consider in addition to the limits on

channels defined above, the following limit from CAIS Section

5.2.5.2.

Each element of a direct-access file is
selected by an integer index of type COUNT.
A conforming implementation must at least
support a range of indices from 1 to 32767.

If the CAIS implementation was required to define the attribute

COUNT'LAST to indicate the upper bound for the index then the

following implications hold. Tool writers could in many

applications construct tools whose correct operation depended

on the attribute rather than a specific predetermined upper

bound. The advantage of writing tools in this manner is that

transportability is gained at the cost of performance

differences.

To see how constants can also be used to ease validation

and increase tool portability, consider the following

alternative specification of the channel Use Limit given above.

Page 28

Conforming implementations shall define the
constant MAXIMUMSIMULTANEOUS CHANNELS and
support exactly that many simultaneous
accepting channels. A minimum value for
the constant shall be 20.

Without such a constant, the validator does not know,

independent of the implementation, how many accepting channels

are implemented. The validation suite must simply be an

exerciser. Not knowing what limit is implemented, the

validation suite would be unable to expect well defined

behavior within and outside the range. To accommodate this,

the validation suite could be changed to fit each separate CAIS

validated. One set of test cases could address values within

the implemented limit and expect acceptable results, and

another set of cases could address robust behavior outside the

implemented limit. Without the constant, the suite would have

to be manually adjusted to each implementation to know which

inputs should produce functional results and which should

demonstrate robust behavior.

V. SUMMARY

In this paper a specification technique for the Common Ada

Programming Support Environment Interface Set (CAIS) has been

presented. The specification consists of parts detailing the

Page 29

syntax of operations, Abstract Machine Programs to demonstrate

the functionality of operations, Protocols and Hidden

Interfaces to indicate interactions among operations, and

Pragmatic Limits for implementations. The paper argues that an

Abstract Machine based on Ada provides a well-defined

description technique for CAIS functionality. The use of an

Ada-based Abstract Machine is motivated by CAIS users

familiarity with Ada, and the ability to produce a validation

tool from the descriptions. The paper shows that Protocols and

Hidden Interfaces are necessary to a complete specification,

and shows how they can be detailed through commentary and

Abstract Programs. Two types of implementation limits are

presented as necessary to CAIS (Use Limits and Value Limits),

and a format for specifying limits is presented.

The specification technique presented in this paper is

being applied to the Process Control and Node Model packages of

CAIS by the authors. Further work is currently in progress to

show how a validation suite can be generated from an Abstract

Machine based specification of CAIS. The approach being taken

is to use Abstract Programs and Limits to identify needed test

cases. This is done in a white-box (using the instructions in

Abstract Programs) fashion. Since validation is to be done at

the interface, rather than by observing implementation details,

the anticipated results for each test case are constructed from

Protocol and Hidden Interface information.

Page 30

VI. REFERENCES

[I] CastorV.L. APSE Evaluation and Validation Team Plan.
Wright Patterson AFB, Ohio, November 1983.

[21 Draft Specification of the Common APSE Interface Set
(CAIS), Version 1.1, Ada Joint Program Office,
Pentagon, Washington, D.C., September 1983.

[3] Freedman,R.S., Specifying KAPSE Interface Semantics,
in Kernel Ada Programming Support Environment (KAPSE)
Interface Team: Public Report Volume II, NOSC TD522,
Naval Ocean Systems Center, San Diego CA, pp.
3ml-3m13, October 1982.

[4] FreedmanR.S., The Need for an Operational Semantic
Definition of CAIS, Position Statement, Hazeltine
Corp, Greenlawn, NY, December 1983.

[5] Goodwin,J.P., A Revised Stoneman for Distributed Ada
Support Environments, Technical Report, Department of
Computer Science, CS830010, Virginia Tech, Blacksburg
VA, October 1983.

[6] Hoare,C.A.R., An Axiomatic Basis for Computer
Programming, Communications of ACM, October 1969.

[7] Kafura, Lee, Lindquist, and Probert, Validation in
Ada Programming Support Environments, Technical
Report Department of Computer Science, CSIE-82-12,
Virginia Tech, Blacksburg VA, December 1982.

[8] Oberndorf,P., Ada Programming Support Environments
(APSE) Interoperability and Transportability (I&T)
Management Plan, in Kernel Ada Programming Support
Environment (KAPSE) Interface Team: Public Report
Volume III, NOSC TD522, Naval Ocean Systems Center,
San Diego CA, pp. 3AI-3A34, June 1983.

[91 Probert,T.H., Ada Validation Organization: Policies
and Procedures, Mitre Corporation, Washington D.C.,
Report MTR-82W00103, June 1982.

[101 Stoy,J., Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory, MIT Press,
Cambridge MA 1977.

THCHNICAL REPORTS DISTRIBUTION LIST

Bob Converse
Leader Infounation Sciences NAVSEA
Engineering Sciences Directorate RMS-408
Office of Naval Research Washington, DC 20362
800 North Quincy St.
Arlington, VA 22217 Jay Ferguson

DOD
Office of Naval Research Resident ATTN: T303, Jay Ferguson
Representative, Joseph Henry Building 9800 Savage Rd.
Room 623 Ft. Meade, MD 20755
2100 Pennsylvania Avenue, N. W.
Washington, DC 20375 Jack Foidl

TRW; DSG
Director, Naval Research Laboratory 3420 Kenyon St. *202
ATTN: Code 2627 San Diego, CA 92110
Washington, DC 20375

John Foreman
Defense Teclical Information Center Texas Instruments, Inc.
Building 5, Cameron Station P. 0. Box 405 M/S 3407
Alexandria, VA 22314 Lewisville, TX 75067

V. L. Castor Barbara Fromhold
AFWAL/AAAF U.S. Army CDCOM.
riqht-Patterson AFB, Ohio 45433 DRSEL-TCS-ADA-3

Ft. Morinouth, NJ 07703
Dr. Jack Kramer
I.D.A. Tim Harrison
1801 N. Beauregard St. Texas Instruments, Inc.
Alexandria, VA 22311 P. 0. Box 405 M/S 3407

Lewisville, TX 75067
Lt. Cdr Brian Schaar
Ada Joint Program Office Hal Hart
3D139 (400AN) TRW DSG
Pentagon One Space Park
Washington, DC 20301 R2/1127

Redondo Beach, CA 92078
Mitch Bassman
Computer Sciences Corp. Doug Johnson
6565 Arlington Blvd. SoftWrights Inc.
Falls Church, VA 22046 1401 N. Central Expressway
M/C 281 Suite 100

Richardson, TX 75080
Frank Belz

TRW DSG Larry Johnston
One Space Park NADC
R2/1127 Code 503
Redondo Beach, CA 92078 Warminster, PA 18974

Tom Conrad Elizabeth Kean
NUSC RADC/COES
Bldg. 1.171 Griffiss AFB, NY 13441
Newport, RI 02840

- - -.-

PAGE 2

Rudolph Krutar Tricia Oberndorf
Elizabeth Wald NOSC

NRL Code 8322
Code 5150 San Diego, CA 92152

4555 Overlook Ave., SW
Washington, DC 20375 Shirley Peele

Guy Taylor

Bill Laplant FCDSSA
HQ USAF/SITT Code 822

Washington, DC 20330 Bldg. 1279 Dam Neck
Virginia Beach, VA 23461

Larry Lindley
NC D/072.21 Lee Purrier

6000 E. 21st St. George Robertson

Indianapolis, IN 46218 FCDSSA
Code 822

Warren Loper 200 Catalina Blvd.

NOSC San Diego, CA 92147

Code 8315
San Diego, CA 92152 Mo Stein

Ed Dudash
Lucas M. Maglieri NSWC/DL
National Defense Hqds. Code N31
101 Colonel Bay Dr. Dahlgren, VA 22448

Ottawa, Ontario KIAOK2
Tucker Taft

Jo Miller Jim Moloney
NWC Intermetr ics

Code 3192 733 Concord Ave.

China Lake, CA 93555 Cambridge, MA 02138

Gil Myers Rich Thall

NOSC So fTech

Code 8322 460 Totten Pond Road

San Diego, CA 92152 Waltham, MA 02154

Philip Myers Chuck Waltrip

Dave Pasterchik Johns Hopkins University

NAVELEX Applied Physics Lab

ELEX 8141A Johns Hopkins Road

Washington, DC 20360 Laurel, MD 20707

MITRE Corp. Bill Wilder

K203 SofTech

P. 0. Box 208 Three Skyline Place

Bedford, MA 01730 Suite 500
5201 Leesburg Pike

Eldred Nelson Falls Church, VA 22041
TRA DSG
One Space Park
R2/1076
Redondo Beach, CA 90278

PAGE 3

Bernie Abrams Eric Griesheimer
Charles Mooney Nicholas Baker
Grumman Aerospace McDonnel Douglas Astronautics
Mail Station B38-35 5301 Bolsa M/S 11-2
Bethpage, NY 11714 Huntington Beach, CA 92647

Dennis Cornhill Ron Johnson
John Beane Boeing Aerospace Co.
Honeywell/SRC 3903 Hampton Way
2600 Ridgeway Pkwy. Kent, WA 98032
MN17-2351
Minneapolis, MN 55413 Judy Kerner

Norden Systems M/S M171
Fred Cox P. 0. Box 5300
EES/SEL/DSD Norwalk, CT 06856
Georgia Tech
Atlanta, GA 30332 Reed Kotler

Lockheed Missiles & Space

Dick Drake 1111 Lockheed Way
IBM Sunnyvale, CA 94086

Federal Systems Division
102/075 Pekka Lahtinen

Godwin Drive Cy Softplan AB
Manassas, VA 22110 P. 0. Box 209

SF-33100 Tampere 10

Jon Fellows Finland
System Development Corp.
5151 Camino Ruiz, 02-B14 Eli J. Lamb
Camarillo, CA 93010 Bell Labs - 3A 405

600 Mountain Avenue
Herman Fischer Murray Hill, NJ 07974

Litton Data Systems
MS 64-30 Dave Loveman
8000 Woodley Ave. Massachusetts Computer
Van Nuys, CA 91409 Assoc., Inc.

26 Princess St.
Roy Freedman Wakefield, MA 01880
Hazeltine Corp.
Research Laboratories Tim Lyons
Greenlaw, NY 11740 Software Sciences Ltd.

Abbey House
Anthony Gargaro Farnborough Hampshire
Computer Sciences Corp. GU14 7NB
304 W. Route 38 England
Moorestown, NY 08057

Dave McGonagle
Steve Glaseman GE OR&D K-i
Teledyne Systems Co. Schenectady, NY 12345
19601 Nordhoff St.
Northridge, CA 91324 H. R. Morse

Frey Federal Systems
Chestnut Hill R.
Amherst, NH 03031

"I ...l lm r , , . ..

PAGE 4

Erhard Ploedereder Chris Anderst-n
c/o Tartan Laboratories AFATL/D1M

477 melwood Ave. Elgin AFB
Pittsburgh, PA 15213 FL 32542

Ann Reedy Bob Harrell

PRC AFCCRC/SKXX
1500 Planning Res. Dr. Tinker AFB

5WI OK 73145

McLean, VA 22102
Dave Fautheree

Jim Ruby AFCMD/KRS

Hughes Aircraft Co. Kirtland AFB

P. 0. Box 3310, 618/P215 NM 87117

Fullerton, CA 92634
John Prentice

Sabina Saib AFHRL/I DC
General Research Corp. Lowry AFB

P. 0. Box 6770 CO 80230

Santa Barbara, CA 931111
John Taylor

Edgar Sibley AFLC/MMEC
Alpha omega Group, Inc. Wright-Patterson AFB

World Building Suite 406 OH 45433

8121 Georgia Avenue
Silver Spring, MD 20910 Rick Long

AFWAL/AAAF-2

Rob Westermann Wright-Patterson AFB

TrNO-IBBC OH 45433
P. 0. Box 9
2600 AA Delft Rich Wallace

The Nether lands AFWAL/AAAF-2
Wright-Patterson AFB

Herb Wiliman OH 45433

Raytheon Company - MSD

Hartwell Road (GRA-l) Jimmy Williamson

Bedford, MA 01730 AFWAL/AAAF-2
Wright-Patterson AFB

Doug Wrege OH 45433

Dianna Humphrey
Control Data Corp. Mark Mears

5500 Interstate N. Pkwy. AFWAL/FIGIH

Atlanta, GA 30328 Wright-Patterson AFB
OH 45433

Larry Yelowitz
Ford Aerospace & Communications Corp. WDL Georgeanne Cliitwo(d
3939 Fabian Way MSV02 ASD/ADOL

Palo Alto, CA 94303 Wright-Patterson AFB
OH 45433

Gina Burt
AFALC/PT EC Nelson Estes

Wright-Patterson AFB ASD-AFALC/AXTS

OH 45433 Wright-Patterson AFB
OH 45431

PAGE 5

Dan Burton Ronnie Martin
FSD/ALL Georgia Institute
Hanscom AFB, MA 01731 of Technology

Atlanta, GA 30332

Don Jennings
C-AEC/MMECE Terry Humphrey

Tinker AFB, OK 73145 Johnson Space Ctr.

Mail Station EH-4

Pat Maher Houston, TX 77058

DO-ALC/tECF
Hill AFB, UT 84056 Lucas Maslieri

National Defense HQ
Sam Dugan 101 Colonel By Drive
SA-ALC/M-"EC Ottawa Ontario

Kelly AFB, TX 78241 KIA OK2

John Miller Kevin Chadwick

SM-ALC/MMEHP National Defense HQ

McClellan AFB, CA 31098 101 Colonel By Drive
Ottawa Ontario

Palmer Craig KIA OK2
WR-ALC/MMESM
Robins AFB, GA 31098 Bob Knapper

Institute for

Rich Fleing Defense Analyses
Aerospace Corp. 1801 N. Beauregard St.

MI/112 Alexandria, VA 22311

P. 0. Box 92957
Los Angeles, CA 90009 Betsy Kruesi Bailey

Institute for
Gregg Bettice Defense Analyses
Naval Avionics Ctr. 1801 N. Beauregard St.
Code d25 Alexarria, VA 22311
6000 E. 21st St.
Indianapolis, IN 46218

